

Are cross-language influences present during visual processing among different-script bilinguals?

Does phonological overlap (in the absence of meaning overlap) facilitate/interfere with processing?

How early in learning do these influences emerge?

• Cross language influences (CLI) typically observed in visual lexicaldecision tasks of same-script bilinguals (Dijkstra 2005; Degani & Tokowicz 2010). Less is known about CLI in **different-script bilinguals** (Miwa et al., 2014).

- Cognates (form & meaning overlap) typically lead to *facilitation*.
- •False cognates (FC, form overlap with no meaning overlap) typically lead to *interference* for same-script bilinguals.

Could orthography serve to cue language membership and **prevent** or modulate CLI?

> Evidence for cognate facilitation & FC interference among different-script (Arabic-Hebrew) bilinguals (Degani et al., 2018; Prior et al., 2017), but semantics was explicitly tapped with a semantic relatedness task. Would similar effects emerge in a lexical **decision** task?

Some evidence that pure phonological overlap leads to facilitation in lexical decisions among different-script bilinguals (Peleg et al., in press -Hebrew non-words sounding like Spoken Arabic were easier to reject than typical Hebrew non-words not sounding like Arabic).

Current Study

Participants

- 30 Arabic-Hebrew bilinguals
- 30 native Hebrew speakers with no knowledge of Arabic (control)
- 43 native Hebrew speakers who learned Arabic vocabulary
- see learning paradigm

	Arabic-Hebrew	Native Hebrew	N
	bilinguals	Control	Lea
Number of participants	30	30	
Age (in years)*	21.50 (2.76)	26.38 (4.48)	
Maternal Education (SES)	13.17 (4.25)	14.67 (3.04)	
Education (in years)	14.63 (2.09)	13.87 (1.57)	
Hebrew Proficiency*	8.15 (1.18)	9.68 (0.48)	
Hebrew Use*	6.27 (1.46)	7.82 (1.37)	
Arabic Proficiency	9.42 (0.69)	_	
Arabic Use~	5.92 (2.01)	_	
English Proficiency	6.94 (1.61)	7.41 (0.99)	
English Use	5.68 (2.00)	6.31 (1.61)	

Note: * Marks a significant difference between the Arabic-Hebrew group and the native Hebrew groups. The two native Hebrew groups did not differ on any of the measures. Standard deviations appear in parenthesis.

Degani, T., & Goldberg, M. (2019). How individual differences affect learning of translation-ambiguous vocabulary? Language Learning, 69(3), 600-651 Degani, T., Prior, A., & Hajajra, W. (2018). Cross-language semantic influences in different script bilinguals. Bilingualism: Language and Cognition, 21, 782-804 Degani, T., & Tokowicz, N. (2010). Semantic ambiguity within and across languages: An integrative review. Quarterly Journal of Experimental Psychology, 63, 1266-1303 Dijkstra, T. (2005). Bilingual visual word recognition and lexical access. In Kroll, J. F., De Groot, A. M. B. (Eds.). Handbook of Bilingualism: Psycholinguistic Approaches (pp. 179–201). Oxford:

Oxford University Press. • Kang, S. H. K., Gollan, T. H., & Pashler, H. (2013). Don't just repeat after me: Retrieval practice is better than imitation in foreign vocabulary learning. Psychonomic Bulletin & Review, 20, 1259–1265.

Cross-Language Influences Across Scripts - Evidence from a Visual Lexical Decision Task with Arabic-Hebrew Bilinguals and Arabic Learners.

Department of Communication Sciences and Disorders, University of Haifa

Method

Stimuli & Procedure

	Cognate
Presented form	עין Sajin/
Hebrew meaning	Eye
Arabic meaning	Eye

84 Hebrew words and 84 orthographically legal non-words (matched on length, bigram & trigram Hebrew frequency (12 million word corpus from articles in Hebrew newspaper Haaretz, see Peleg et al., in press).

Hebrew words included:

- 14 Hebrew-Arabic cognates
- 14 Hebrew-Arabic false-cognates (FC)
- 42 **unambiguous control** Hebrew words.
- 14 filler ambiguous Hebrew words (homonyms) (e.g., 'mapa' meaning both a tablecloth and a map).

Stimuli Selection

- No difference in phonological form similarity between cognates (M=4.23, SD=0.61) and FC Hebrew word.
- Words were matched across word type on Arabic length (in syllables), Hebrew length (in letters & syllables), Hebrew frequency (heTenTen 2014 via SketchEngine (Kilgarriff et al., 2014).

Vocabulary Learning Paradigm

Participants learned 54 Arabic words (14 cognates, 14 FC, 28 control) in one session (see below) Tested in the Hebrew visual lexical-decision task immediately after learning

References

• Kilgarriff, A., Baisa, V., Bu'sta, J., Jakub'i'cek, M., Kov'a'r, V., Michelfeit, J., . . . Suchomel, V. (2014). The Sketch Engine: Ten years on. Lexicography, 1, 7–36. • Miwa, K., Dijkstra, T., Bolger, P., & Baayen, H. (2014). Reading English with Japanese in mind: Effects of frequency, phonology, and meaning in different-script bilinguals. Bilingualism: Language and Cognition, 17, 445–463. Peleg, O., Degani, T., Raziq, M., Taha, N. (in press). Cross-lingual phonological effect in different-script bilingual visual-word recognition. Second Language Research. Prior, A., Degani, T., Awawdy, S., Yassin, R., & Korem, N. (2017). Is susceptibility to cross-language interference domain specific?. Cognition, 165, 10-25.

Tamar Degani & Mariana Elias

(M=4.36, SD=0.53), t<1. Based on norming with native Hebrew speakers, rating the similarity (1-5) of the aural form of the Arabic word and the phonological form of the visually presented

and meaning overlap changes with proficiency & use.