Even in Different Scripts: Bilingual Cross Language Semantic Influences During Visual Word Recognition

Nultilingual המעבדה לחקר רב-לשוניות

tdegani@research.haifa.ac.il

- Can semantic processing in one language be affected by bilinguals' other language?
- Does cross-language activation influence different-script bilinguals when one orthography is visually presented?
- A single phonological representation can refer to different semantic representations in different languages

Does the meaning of *meat* influences processing of the word 'lechem' for speakers of Hebrew/Arabic?

- Prior research demonstrated cross-language activation even for visually presented words, but only with same-script bilinguals which use the same orthography, typically the Roman Alphabet (Dijkstra 2005).
- > Other studies demonstrated cross-language influences via translational links (Degani, Prior, & Tokowicz, 2011; Thierry & Wu, 2007) but not via phonology.
- > When different-script bilinguals were studied, both orthographies were presented (e.g., masked priming Gollan, Forster, & Frost, 1997)

Why study different script bilinguals?

> Orthography can theoretically serve as a valid cue to language membership

Hebrew	וזחטיכלמנסעפצקרשתםךףץן
Arabic	ح خ ق ف غ م ع خ ح ك م ن ل ي س ش ئ ء ؤ ر لا ى ة و ز ظ ط ض

> De-coupling of influences from shared orthography vs. shared phonology

> There are many different-script bilinguals...

The Current Study

> Does Arabic influence performance of Arabic-Hebrew bilinguals in Hebrew? Can we observe such cross-language influences with little processing time of

the visually presented words?

Does second-language (L2) proficiency modulate these cross-language

influences?	Measure	Arabic-Hebrew	Native Hebrew
		Bilinguals	(Control)
Participants:	Age (in years)*	20.1 (1.07)	26.17 (5.06)
	Education (in years)*	12.36 (1.97)	13.98 (2.18)
► 34 Arabic-Hebrew	Arabic reading proficiency	9.62 (0.89)	-
bilinouals (1 male)	Arabic writing proficiency	9.21 (1.32)	-
Diniguais (1 maic)	Arabic conversation proficiency	9.65 (0.88)	-
≥34 native Hebrew	Arabic speech comprehension proficiency	9.71 (0.63)	_
1 • 1	Hebrew reading proficiency*	8.25 (1.44)	9.38 (1.74)
speakers with no	Hebrew writing proficiency*	7.38 (1.41)	9.32 (1.75)
knowledge of Arabic	Hebrew conversation proficiency*	6.53 (1.61)	9.29 (1.77)
Miowiedge of mable	Hebrew speech comprehension proficiency*	8.39 (1.43)	9.47 (1.75)
(10 males)	Hebrew use*	6.10 (2.02)	8.18 (1.33)
	Age began learning Hebrew (years)	7.85 (1.52)	-
	Time studied Hebrew (in years)	10.56 (1.50)	-

Tamar Degani¹, Anat Prior², & Walaa Hajajra¹

¹Department of Communication Sciences & Disorders, ²Department of Learning Disabilities University of Haifa, Israel

לחם

אבגדה ابت ثج

Stimuli:

> 42 Targets paired with related critical cognate <u>or</u> control primes ('yes' responses) \geq 42 Targets paired with unrelated critical false-cognate <u>or</u> control primes ('no' responses) \geq 78 fillers -- each participant saw only 13% of items with phonological overlap

- Critical and control primes were matched on
 - Hebrew length and frequency
 - Semantic & form similarity ratings (1-7) norming from native Hebrew speakers Form overlap of Arabic Translations

		Cognate (n=42)		False-Cognate (n=42)	
		Critical	Control	Critical	Control
	Presented form	סבון	קצף	סוס	עט
	IPA	/sabon/	/ketsef/	/sus/	/?et/
	Hebrew meaning	Soap	Foam	Horse	Pen
Prime					
	Arabic meaning	Soap	N/A	Chick	N/A
	Presented form	מקלחת		ביצה	
	IPA	/miklaxat/		/bejtsa/	
Torgat	Hebrew meaning	Shower		Egg	
Target					
	Arabic meaning	N/A		N/A	
Expected Response		Yes		No	

Task & Procedure

Semantic relatedness decision (Yes/No) in Hebrew

► Language Proficiency Measures:

- Picture naming task (30 pictures per language) (based on Moreno-Martínez & Montoro, 2012)
- Language History Questionnaire (Marian et al., 2007)

Predictions: for Arabic-Hebrew bilinguals, but not native Hebrew speakers: > Arabic meaning should facilitate processing of targets following critical cognate primes > Arabic meaning should interfere with processing of targets following critical false-cognate primes relative to control primes.

items for the native Hebrew control group.

- related.

 \geq No modulations by Hebrew (L2) proficiency in the current sample.

EU_FP7 grant CIG-322016

Results

Data analyzed using LMEs with participant & item as crossed random factors, and Group (native Hebrew vs. Arabic-Hebrew) and Condition (critical vs. control) as fixed factors. Separate analyses for 'yes' (cognate) and 'no' (false-cognate) trials. > Initial analyses revealed non-negligible differences between the critical and control

Based on timed semantic relatedness judgment of a separate group of 30 native Hebrew speakers, selected a subset of items with more than 85% correct responses.

Cognate facilitation: For cognate primes bilinguals were more accurate and faster at correctly designating the prime and target Hebrew words as semantically related. **False-cognate interference:** For false-cognate primes bilinguals were more likely to erroneously designate the prime and target Hebrew words as semantically

Discussion

• Activation of L1 Arabic during visual word-processing in L2 Hebrew. • Bilinguals were unable to limit activation of the non-target language even when a single orthography is presented and in the absence of bottom-up activation for the non-target language \rightarrow do not use the valid cue to target language identity. • Cross-language influences that are phonologically mediated, strong enough to lead to erroneous decisions very rapidly (prime-target SOA = 250 ms). • **Conclusion**: strong evidence for cross-language influences even among differentscript bilinguals, suggesting an interconnected dynamic bilingual lexicon

References

Degani, T., Prior, A., & Tokowicz, N. (2011). Bidirectional transfer: The effect of sharing a translation. Journal of Cognitive Psychology, 23, 18-28. Dijkstra, T. (2005). Bilingual visual word recognition and lexical access. In Kroll, J. F. & De Groot, A. M. B. (Eds.). Handbook of Bilingualism. Psycholinguistic Approaches (pp. 179-201). Oxford: Oxford University Press Gollan, T., H., Forster, K., & Frost, R. (1997). Translation priming with different scripts: Masked priming with cognates and noncognates in Hebrew-English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1122-1139. Marian, V., Blumenfeld, H., & Kaushanskaya, M. (2007). The Language Experience and

Proficiency Questionnaire (LEAP-Q): Assessing language profiles in bilinguals and multilinguals. Journal of Speech, Language, and Hearing Research, 50, 940-967. Moreno-Martínez, F. J., & Montoro, P. R. (2012). An ecological alternative to Snodgrass & Vanderwart: 360 high quality colour images with norms for seven psycholinguistic variables. PlosOne, http://dx.doi.org/10.1371/journal.pone.0037527.

Thierry, G., & Wu, Y. J. (2007). Brain potentials reveal unconscious translation during foreignlanguage comprehension. Proceedings of the National Academy of Sciences, 104, 12530-12535.